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Abstract: For rigid-flexible coupling multi-body with variable topology, such as the system of internally carried 
air-launched or heavy cargo airdrop, in order to construct a dynamic model with unified form, avoid redundancy in the 
modeling process and make the solution independent, a method based on the equivalent rigidization model was 
proposed. It divides a system into independent subsystems by cutting off the joints, of which types are changed with the 
operation process of the system. And models of different subsystems can be constructed via selecting suitable modeling 
methods. Subsystem models with flexible bodies are on the basis of the equivalent rigidization model which replaces 
the flexible bodies with the virtual rigid bodies. And the solution for sanction, which is based on the constraints force 
algorithm (CFA) and vector mechanics, can be independent on the state equations. The internally carried air-launched 
system was taken as an example for verifying validity and feasibility of the method and theory. The dynamic model of 
aircraft-rocket-parachute system in the entire phase was constructed. Comparing the modeling method with the others, 
the modeling process was programmed; and form of the model is unified and simple. The model, method and theory can 
be used to analyze other similar systems such as heavy cargo airdrop system and capsule parachute recovery system. 
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1 Introduction 
 

So far, the research on internally carried 
air-launched rocket and heavy-equipment airdrop at 
home and abroad mainly concentrates on the 
modeling and simulation [1–5], the design of 
control laws [6], the airdrop experiments [7, 8], the 
analysis of stability and maneuverability, and the 
development of air launch and precision airdrop 
technology [9–14]. But up to now, there hasn’t been 
accepted model of the systems above. As we all 
know, the internally carried air-launched system is a 
complex parachute-payload system with variable 
topology, which is similar to a typical HCADS 
(Heavy Cargo Airdrop System) [3] and CPAS 

(Capsule Parachute Recovery System) [15–17]. 
Multi-body system, such as air-launched system, 
consists of interconnected components, and flexible 
parts often exist in such a system [18], and the fluid 
structure interaction of the parachutes and other 
parts of the system is most complex [19], and they 
make modeling and analysis very difficult. In order 
to reduce the problem to one of an appropriate size, 
some researchers made the rigid assumptions, 
which could cause more errors in actual conditions. 
As time goes by, several approaches have been 
proposed to treat large elastic deformations of 
flexible multi-body systems. Some researchers [15] 
split the deploying suspensions and parachute into 
N rigid links, thus the deploying parachute system 
can be regarded as an open chain multi-body system, 
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in which each body is connected by means of 
revolute joints. Others [15, 20] used mass spring 
damper model, in which suspensions line and main 
canopy were modeled as serials lumped mass 
connected to each other by springs. More details 
about the models can be seen in Ref. [15]. 

However, because flexible bodies exist in the 
system and the methods for rigid body are different 
from those of flexible body, the dynamic equations 
for rigid-flexible coupling multi-body system 
cannot be constructed at the same time and solved 
independently, which makes modeling process more 
complex and redundant. Moreover, considering that 
the topology of the multi-body systems is changed 
with the operation process of system and the 
generalized coordinates are different for different 
topologies, the models cannot be easily established 
via only one modeling method such as Kane method 
[21, 22] or analytical mechanism [23, 24], which is 
based on the selection of suitable generalized 
coordinates to simplify modeling process. 
Furthermore, the forms of the models in different 
phases are always not unified. For examples, some 
researchers assumed that the position and rotation 
of the aircraft in airdrop phase were pre-determined 
and did not result from forces and moments acting 
upon it. Others [5, 23] assumed that the parachute 
model was simplified as drag, which run opposite 
of the airflow axis. And the total airdrop lifetime 
was divided into some phases and the models in 
different phases were constructed separately [3]. 

To surmount these flaws, this paper proposed 
the equivalent rigidization model, which made 
modeling process of rigid body and flexible body 
unified. And based on the equivalent rigidization 
model, constraints force algorithm (CFA) [15], 
vector mechanism [25] and rigid modeling method, 
this paper proposed a method to construct a unified 
model for the rigid-flexible coupling multi-body 
with variable topology, which achieved the goal of 
unified modeling process and independent solution. 
To verify the veracity and feasibility of the above 
method and theory, we took internally carried 
air-launched rocket as an example, and then a 
virtual simulation system for the characteristic 
research of air-launched system was developed 
through MATLAB/Simulink, C language and 
ADAMS (a dynamic software). This model, method 
and theory can serve as the foundation for the 
subsequent quantitative research. 

 
2 Equivalent rigidization of flexible body 
 
2.1 Movement description of flexible suspension 

line 
The suspension line and its frame are 

described in Figure 1. As shown in Figure 1, s is the 
Lagrange arc length coordinate before suspension 
line’s deformation and s1 is the Lagrange arc length 
coordinate after the suspension line’s deformation. 
Base on the French frame (t, n, b), the origin of the 
local frame Otxtytzt is at the center of the differential 
element, while the zt-axis points forward and 
parallels to the tangent vector t, the yt-axis points 
upward in the vertical plane and parallels to the 
principal normal n and the xt-axis points left and 
parallels to the subnormal b. In order to reduce the 
problem to one of an appropriate size, a number of 
simplifying assumptions have been made. 

1)  Suspension line is a flexible body, which 
is homogeneous, continuous and isotropic. 

2)  The shear force and horizontal moment 
of suspension line are negligible. 

3)  Axial displacement of suspension line is 
small enough, and defined as  ,s t   

1 1

d 0

d d d
lim 1

d ds

s s s

s s


  . 

 

 
Figure 1 Differential element and its local frame 

 
As a flexible body, suspension line cannot 

endure shear force and moment, so the internal 
force only refers to stretching force. The 
transformation matrix B(s,t) from a vector in the 
local frame to the inertial reference frame can be 
described by a rotation by Euler angles of θ and . 

 

 
cos sin 0

, sin cos cos cos sin

sin sin cos sin cos

s t

 
    
    

 
   
  

B       (1) 

 
The tangent vector t at s position can be 

expressed as 
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 1 1s s
 

 
  

R R
t                          (2) 

 
The stiffness of suspension line is employed 

EA. Using it and based on the linear elastic 
hypothesis, we can get the stretching force: 

 
EAT t                                (3) 

 
The velocity of suspension line in the local 

frame can be given by 
 

 , x y zs t V V V
t


   

R

V n b t                 (4) 
 

Based on the theory of conservation of mass, 
the relation between ρl and ρl

* can be given by 
 

* 1d

dl l
s

s
                                (5) 
 
where ρl is density below displacement; ρl

* is 
density after displacement. 

Defining ω(s,t) as the angular velocity of 
differential element in the local frame and Ω(s,t) as 
the suspension line curvature in the local frame and 
using Figure 1, we find the following relations: 

 

sin

cos

x

y

z

t

t

t



 

 

  
 



 

                           (6) 

 

sin

cos

x

y

z

s

s

s



 

 

  
 



 

                           (7) 

 
2.2 Continuous model 

Based on the Newton’s Second Law of motion, 
all the differential elements (ds) meet the following 
vector equation, 

 
   *

1

D , D ,

D Dl

s t s t

t s
  

V T
f                   (8) 

 
where f is distributed loading which rope suffers 
from. 

The curve of suspension line is assumed to be 
continuous and smooth enough, which means that 
differentiation of curve with respect to time and 
displacement could exchange. So, the compatible 
equation of suspension line can be obtained, 

   D , D ,D D

D D D D

s t s t

t s s t

   
   

   

R R
               (9) 

 
Simplifying Eq. (9) using Eq. (5) and Eq. (6) 

yields  

  D D
1

D Dt s
 

V
t                        (10) 

 
Combining Eqs. (5)–(8) and Eq. (10), the 

complete dynamic vector equation is formed as 
 

     
s t

 
 

 
Y Y

K Y M Y F Y                (11) 
 
where  

T
x y z= V V V     Y  

 
 

0 0 sin cos 0 0

0 0 cos 0

0 0 sin 0

0 0 0 1 sin 0 0

0 0 0 0 1 0

0 0 0 0 0 1

z y

x z

x y

V V

V V

V V

  

 
 

 


 
 

 
 
 
  
  
  

M Y ; 

 

0 0 0 sin 0 0

0 0 0 0 cos 0

0 0 0 0 0

1 0 0 sin cos 0 0

0 1 0 cos 0

0 0 1 sin 0

z y

x z
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V V

V V

V V
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 

 




 
 
 
 
   
  
   

K Y ; 

 

 
 
 

1

1

1

0

0

0

x

y

z

f

f

f






  
  
   
 
 
 
  

F Y . 

 
2.3 Discrete solution 

Based on the discrete idea of finite element 

theory,
s



Y

in the dynamic Eq. (11) can be 

discretized and the specific method is as follows. 
i and j are two segments of suspension line, in 

which i is close to j. Vi is the velocity of the ith 
segment and Vj is the velocity of the jth segment. 
The relationship between Vi and Vj can be expressed 
as  

    1, ,j j i i i i i i j j j jV s t s t V s s    B B l l       

(12)  
where i

l  is the anti-symmetric matrix of i
l , which 

is position vector of the ith segment given by li=[0 0 
s]. 
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Considering that s is assumed to be a finitude 

small distance, 
s



Y

 can be discretized as 
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)sin()sin(
2
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))(sin(

)cos()cos(

)cos()sin(

)sin()cos(

2







Y
 (13) 

 
Rearranging Eq. (11) yields the following 

vector equation: 
 

     1

t s
      

Y Y
M Y F Y K Y            (14) 

 
Expanding Eq. (14) using Eq. (13), we can 

rewrite Eq. (14) as first order differential equations. 
In order to obtain high-order accuracy after 

discretizing, s must be as small as possible. But 
smaller s means more excessive computational cost 
of current multi-body solution algorithms, which is 
too difficult to obtain the kinetic characteristics by 
solving many differential equations with a number 
of design variables or a number of active 
constraints [26]. So, the algorithm of iteration based 
on finite theory can be selected to solve the problem. 
The complete system of equations must be put in a 
form convenient for algorithm of iteration, so 
rewriting Eq. (14) yields vector discretized 
equations: 

 

           1 d 1 ,
n

n n n t n
s

  
    

 

Y
Y n M F K Y  

n=2, …, N                         (15)  
where n is the index of the ith segment; dt is the 
time step. The solving method in a time step can be 
summarized. 

Step 1) Determine initial boundary conditions, 
such as the external force, the initial status of 
suspension line and so on. 

Step 2) Update the state variables. 

Step 3) With boundary conditions given, solve 
the recursion formulation of velocity Eq. (12) and 
the state formulation Eq. (15) and we can get the 
external force F(N). 

Step 4) Using the external force F(N) in Step 3, 
the calculation error can be solved. 

 
 N= Ne F F                           (16) 

 
Step 5) The convergence criterion is checked 

by comparing the calculation error e and setup error 
e0. If converged, go to the next time step. Otherwise, 
go to Step 2. 

The final consumed time meets the expression 
as follow, 

 
  allt n t                               (17) 

 
The kinetic characteristics of flexible 

suspension line within the time tall can be obtained 
using the method above. 
 
2.4 Equivalent rigidization model 

It is apparent of the difference between 
modeling methods of rigid body and flexible body. 
In particular, there always is redundant modeling 
process in the modeling methods of rigid-flexible 
coupling multi-body. To surmount these flaws, the 
following method of equivalent rigidization model 
is proposed. It replaces the flexible suspension line 
with a virtual rigid body, of which the kinetic 
characteristics are similar to those of the original 
flexible suspension line. With equivalent 
rigidization, the uniform dynamic expression of 
rigid-flexible coupling multi-body system can be 
constructed and the solution is independent between 
virtual rigid body and original flexible body. The 
details of how to construct an equivalent rigid body 
is given below. 

Firstly, determine the virtual rigid body which 
is a virtual object link back and front attach-points. 

Secondly, before describing the equations of 
virtual rigid body, body-fix reference frame is 
needed to describe the motion which is right- 
handed and orthogonal (see Figure 1). The origin is 
at the virtual rigid body center of gravity, while the 
z-axis points forward through the front attach-point, 
the y-axis points upward in the vertical plane and 
the x-axis points right. 

Thirdly, velocity and deformational velocity of 
an equivalent rigid body is constructed to be equal 
to that of the original flexible body at front and 
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back attach-point. 
Finally, based on the law of conservation of 

mass and momentum, determine the key parameters 
such as equivalent mass and moment of inertia. 

The details of how to determine the equivalent 
parameters are as follows: 

The total length of original flexible suspension 
line is given by 

 
dd s                                  (18) 
 
The axial vector of equivalent rigid body in the 

inertia reference frame Odxdydzd is given by 
 

 1
s, ds t s r B l                         (19) 

 
where  Ts 0 0 1 .l  

The equivalent length is equal to the axial 
vector in magnitude, so we can get, 

 
2 2 2

rigid x y zd r r r                         (20) 
 

The vector of virtual body from center 
coordinates to front attach-point is given by 

 

rigid2o d
d


r

r                             (21) 
 

Defining 1
rigid
B  as the inverse matrix of Brigid 

and using Figure 2, we find following relations 
 

T1
rigid rigid0 0 d    B r                    (22) 

 
where 
 

rigid B  

rigid rigid

rigid rigid rigid rigid rigid

rigid rigid rigid rigid rigid

cos sin 0

sin cos cos cos sin

sin sin cos sin cos

 

    

    

 
 
 
   

(23) 
 

  
Figure 2 Schematic diagram of equivalent rigidization 

model 

Expanding Eq. (22) using Eq. (23) and 
rearranging result in the equivalent Euler angles. 

 
1

rigid
2 2 2

1
rigid

2 2

cos

cos

z

x y z

y

x y

r

r r r

r

r r









 
 


   

                 (24) 

 
The deformational velocity in the inertia 

reference frame Odxdydzd is given by 
 

1

0

( , ) 0 dB s t s




  
     
    
V


                    (25) 

 
Based on the kinetic characteristic of rigid 

body and using Figure 2, we find following 
relations: 

 

 1
2 1 rigid rigid rigidsd

  V V V B l              (26) 
 

Expressing the velocity as the sum of their 
components with respect to the inertial reference 
frame and expanding Eq. (26) using them yield the 
components of angular velocity ωrigid with respect to 
the body frame: 

 

rigid
rigid
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


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where 
 

rigid rigid rigid rigid

rigid rigid rigid rigid
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cos sin cos

            sin sin
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rigid rigid z
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z
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
 

 2 1 ,  ,  i i i iV V V V i x y z                   (28) 
 

So, the equivalent velocity Vrigid can be given 
by 

 
rigid 1 rigido o  V V V r                     (29) 

 
where Voε is the deformational velocity of 
barycenter, which can be obtained by 
 

12
0

0

( , ) 0 d
d

o s t s




  
     
    

V B


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Based on the law of conservation of mass and 
momentum, we can get the equivalent mass and the 
moment of inertia components: 

 

 2 2 2

rigid
rigid

dx y zV V V s
m
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                      (32) 

 
So, a virtual rigid body, which owns similar 

dynamic characteristics to the original flexible 
suspension line, can be applied. Hereas, the 
modeling theory of multi-rigid-body system can be 
utilized to construct a unified dynamic model of 
flexible-rigid coupling multi-body system, the 
details of how to model and solve are as follows: 

Step 1) Based on the equivalent rigidization 
model, a virtual rigid body can be constructed. 

Step 2) Utilize modeling method of rigid 
multi-body system to construct a dynamic model 

Step 3) Update the equivalent parameters of 
virtual rigid body. 

Step 4) Solve dynamic equations to obtain the 
constraint forces 

Step 5) Utilize the discrete solution for the 
kinetic characteristic of flexible body 

Step 6) Go to Step 3. 
Step 3 to Step 6 form an outer loop. Iterations 

at Step 5 are called inner iterations. 
 
3 Modeling method of variable topology 
 
3.1 Modeling process 

A multi-body system in a topological non-tree 
is shown in Figure 3. 
 

 
Figure 3 Topology of multi-body system 

The original system can be divided into some 
subsystems by cutting off the joints of Ha, Hc, Hi, of 
which the result is shown in Figure 4. The cut-off 
joints can be replaced by constraint forces and 
moments RHab, RHce, RHij, which are shown in  
Figure 4. According to practical conditions, 
different joints can be selected for dividing system. 
 

  
Figure 4 Topology after cutting off joints 

 
Suitable modeling methods are selected to 

construct dynamic models of subsystems BjBk, B0Bf 
and BbBc, which are multi-body systems. If there is 
a flexible system, the equivalent rigidization model 
can be utilized firstly, and then suitable multi-rigid- 
body modeling method can be selected to continue 
modeling. Analyzing Ref. [21–23] and Ref. [25, 27] 
which present a detail discussion of the modeling 
methods of vector mechanism, analytical 
mechanism, transfer matrix, and Kane method and 
rearranging result is the unified dynamic models for 
rigid multi-body systems: 

 

 1  f f
 q M B R E                      (33) 

 
3.2 Iterative relations of constraint force 

For holonomic constraints, the constraint 
equation can be given by 

 
 ( 1,  ,  )i k j ij k K  q q E                (34) 

 
where k is the number of cut-off joints; K is the 
total of joints; i, j are numbers of objects. The 
relationship between two objects and cut-off joint is 
that, Bi and Bj are two bodies interconnected by 
joints Hk, which point Bj. 

Differentiation of Eq. (34) with respect to time 
in the inertial frame yields 

 
ki i kj j ij    q q E                       (35) 

 
where 
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   

   

2 2

2 2

1 6

2 2

2 2

d d

d d

d

d d

ki i kj j ki i kj j

l l

kl

ki i kj j ki i kj j

ls ls

t t
q q

d

t t
q q

  
  
 
  
 

   
 

  
  
 

   

q q q q

q q q q


 
  


 

   



   

 

(l=i, j)                             (36) 
 

 22

2 2d d

ki i kj jij
ij ki i kj j

dd

t t





      

q qE
E q q 

 
   

(37) 
 
where s is the number of constraint equations of 
cut-off joint Hk. 

For non-holonomic constraints, its constraint 
equation can be given by 

 
  ( 1,  ,  )ki i ki j ij k K  q q E                (38) 

 
Differentiation of Eq. (38) with respect to time 

in the inertial frame yields 
 

ki i kj j ij    q q E                       (39) 
 

where 
 

   

   

1 6

d d

d d

d d

d d

ki i kj j ki i kj j

l l

kl

ki i kj j ki i kj j

ls ls

t t
q q

t t
q q

  
  
 
  
 

   
     
   

q q q q

q q q q


 
  


 

   



   

 

(l=i, j)                             (40) 
 

 dd

d d

ki i kj jij
ij ki i kj jt t





      

q qE
E q q 

 
   

(41) 
 

Body i is assumed to belong to a subsystem, 
and the body j is assumed to belong to another one. 

According to the joint location in the topology, 
we can get, 

 

 6 6 6 6 6 1 6

,

l ql

ql l n l

l i j

    


    


q E q

E E

 

0 0              (42) 

 
where n is the total number of bodies; i and j are the 
numbers of adjoining bodies which are 
interconnected by cut-off joints. If l = 0 or n–l–1=0, 
06l×6 or 06(n-l-1)×6 will not exist. 

Substituting constraint Eq. (35) or Eq. (39) 
into dynamic Eq. (33) and rearranging, we can get 
the iterative relation of constraint forces and 
moments. 

 

  11 1
Hij ki i fi fHi kj j fj fHj

      R M B B M B B   

   1
ki qi kj qj f f ij

       E E M B R E E   

(43) 
 
3.3 Solution algorithm 

Considering multi-body system shown in 
Figure 3 and using iterative relation of constraint 
forces and moments result in constraint forces and 
moments RHab, RHce, RHij. 

 

  11 1
Hab ka a fa fHa kb b fb fHb

      R M B B M B B   

   1
ka qa kb qb f f ab

       E E M B R E E   

(44) 
 

  11 1
Hce kc c fc fHc ke e fe fHe

      R M B B M B B   

   1
kc qc ke qe f f ce

       E E M B R E E   

(45) 
 

  11 1
Hij ki i fi fHi kj j fj fHj

      R M B B M B B   

   1
ki qi kj qj f f ij

       E E M B R E E   

(46) 
 
According to modeling process, external force 

and moment of system R includes external forces 
and moments of all the bodies and constraint forces 
and moments among subsystems. It means that RHab 
includes RHce and RHij; RHce includes RHab and RHij; 
RHij includes RHab and RHce. CFA proposed in    
Ref. [15] can be utilized and the more details about 
the algorithm can be seen in Ref. [15]. The details 
of how to solve the iterative Eqs. (44)–(46) are as 
follows. 

Step 1) Set RHab=0. And according to the 
iterative relations, we can get array β. 

Step 2) Set each component of array RHab to be 
equal to one while the others are set to be equal to 
zero, respectively. And according to the iterative 
relations, we can get array α. 

Step 3) Base on the CFA, we can get 
RHab=–α–1β. 

Step 4) Substituting the expression of RHab, we 
can get the other constraint forces and moments. 
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4 Application examples 
 

The dynamic model of internally carried 
air-launched system is taken as an example to verify 
the method above. The configuration of internally 
carried air-launched system is shown in Figure 5, 
where a parachute connects the payload by a riser, 
and the corresponding topology is depicted in the 
Figure 6, where the body B0 refers to carrier, body 
B1 refers to rocket, body B2 refers to flexible 
suspension line, body B3 refers to parachute treated 
as almost a rigid canopy. In Figure 5, there are four 
phases taken into account, the air launch 
preparation phase (Case=0), the rocket extraction 
phase (Case=1), the rocket rotation separation 
phase (Case=2) and the rocket in air movement 
phase (Case=3), which are more complicated to be 
simulated and their simulations have attracted many 
researchers. More details about air-launched phase 
can be seen in Ref. [7]. 

 

 
Figure 5 Air launch and its process 

 

 
Figure 6 Topology of air-launched system 

 
Firstly, we described the assumptions used to 

construct dynamic model for this system: 1) The 
potential energy on ground is zero. 2) The rocket 
goes along the slide rail with no lateral movements 
and the work of the friction is ignored. 3) During 
the air-launched process, the forces acting on the 
system include the gravity and aerodynamics forces. 
The details of how to model the entire air-launched 
process and the validation of numerical simulation 
are given below. 
 
4.1 Aircraft dynamic model based on vector 

mechanisms 
The kinetic equations of carrier aircraft [28], 

which can be divided into two equations, 

translation-kinetic equation and rotation-kinetic 
equation, can be derived from Newton’s Second 
Law of motion, which states that the summation of 
all external forces acting on a body must be equal to 
the time rate of change of its momentum, and the 
summation of all external moments acting on a 
body must be equal to the time rate of change of its 
angular momentum. Using Newton’s Second Law 
of motion and consulting Ref. [5] result in the 
translation-kinetic equation and rotation-kinetic 
equation.  

0
0 0 0

d

d
m

t
 

V
ω V F                         (47) 

 
0

0 0 0 0 0
d

dt
 

ω
J ω J ω M                     (48) 
 
where V0 is velocity vector in the inertia coordinate 
system; ω0 is angle velocity vector from motion 
coordinate system to earth coordinate system; F0 is 
external force of aircraft in the earth coordinate 
system; M0 is external moment of aircraft in body 
coordinate system. 

And based on the Euler kinetic equation, 
relation between the angular velocity and the 
attitude represented as follows: 

 

0 0

0 0 0

00

x

y

z

 
 



   
      
     

W





                         (49) 

 
where ω0x, ω0y, ω0z are projective values of angle 
velocity ω0 at body coordinate system; γ0, φ0, θ0 are 
attitude angles of aircraft; W0 is transformational 
matrix and expressed as 
 

0

0 0 0 0

0 0 0

1 sin 0

0 cos cos sin

0 cos sin cos


  
  

 
   
  

W              (50) 

 
4.2 Rocket-line-parachute system model based 

on Kane method 
1) Generalized coordinates and virtual velocity 
The position coordinates (x, y, z), attitude 

angles (γ1, φ1, θ1) of aircraft, attitude angles (γ2, φ2, 
θ2) of the suspension line, and attitude angles (γ3, φ3, 
θ3) of the parachute are selected as the generalized 
coordinates. We used q and q  to denote the vector 
of the generalized coordinates and their derivative, 
respectively. 

 

 T1 1 1 2 2 2 3 3 3x y z         q  

(51) 
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T
1 1 1 2 2 2 3 3 3x y z            q             

(52) 
 

Consider the general condition, let’s define the 
vector arrays of the system virtual velocity in the 
global frame as v(vx, vy, vz), and the attitude angular 
velocity of aircraft, attitude angular velocity of the 
suspension line and attitude angular velocity of the 
parachute in each body local frame as: ω1(ω1x, ω1y, 
ω1z), ω2(ω2x, ω2y, ω2z) and ω3(ω3x, ω3y, ω3z). The 
vector form of the virtual velocity are written as 

 

 T1 2 3u                         (53) 
 

For simplifying writing, the virtual velocity 
can be rewritten as 

 
T

1 2 3 4 5 6 7 8 9 10 11 12[                       ]u u u u u u u u u u u uu  
(54) 

 
Based on the Euler kinetic equation, relation 

between the virtual velocity and the generalized 
velocity can be represented as follows: 

 
u Wq                                 (55) 

 
where 
 

 3 3 1 2 3diag W W W WE  
 

And the kinetic equation of the system can be 
given by 

 
1q W u                               (56) 

 
2) Partial velocities 
In the global frame, considering the virtual 

body i, i=1–3, its velocity and angular velocity can 
be stated as follows: 

 

 

 
 
 

1 1 1 1

2 1 b1g 1 1 b2g 21 2

3 1 b1g 1 1 b2g 21 2

b2g 22 2 b3g 3 3

1 1 1 1

2 2 2 2

3 3 3 3
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
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   
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 










V

V V M L ω M L ω

V V M L ω M L ω

M L ω M L ω

ω

ω

ω

  
 

 

 

 

 

 

           (57) 

 
where V is the velocity of object’s barycenter in 
earth coordinate system; ω is angle velocity of 
object in its own body coordinate system; parameter 
of subscript 1 belongs to rocket; parameter of 
subscript 2 belongs to rope; parameter of subscript 
3 belongs to parachute; Mij is the transformational 

matrix from i coordinate system to j coordinate 
system; subscript b in transformational matrix 
refers to body coordinate system; subscript g in 
transformational matrix refers to the earth 
coordinate system; L1 is a vector from front tiedown 
point to rocket’s barycenter in rocket’s body 
coordinate system; L21 is a vector from rope’s 
barycenter to front tiedown point in rope’s body 
coordinate system; L22 is a vector from back 
tiedown point to rope’s barycenter in rope’s body 
coordinate system; L3 is a vector from parachute’s 
barycenter to back tiedown point in parachute’s 
body coordinate system; L  is the anti-symmetric 
matrix. 

Based on Eq. (57) and the theory of Kane 
method, the partial velocities and the partial angular 
velocities of the body i, i=1–3, are stated as follows: 

 
T

1 1 2 2 3 3
ˆ ˆ ˆ ˆˆ ˆ ˆ   V V ω V ω V ω             (58) 

 
where 
 

 
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 
 
 

1 3 3 3 9

2 3 3 1 1 2 21 3 3

3 3 3 1 1 2 21 22 3 3

1 3 3 3 3 3 6

2 3 6 3 3 3 3

3 3 9 3 3

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

b g b g

b g b g b g

 

 



  

  

 

 

    
      
 







V E

V E M L M L

V E M L M L L M L

ω E

ω E

ω E

 

   

0

0

0 0

0 0

0

 

(59) 
 

3) Generalized active force and generalized 
inertia force 

The vector of generalized active force R
~

 of 
system can be expressed as 

 
TˆR V R                                (60) 

 
where R is external force and moment and includes 
aerodynamic force and gravity. 
 

 T1 1 2 2 3 3R F M F M F M           (61) 
 

According to the theories of D`Alambert and 
Kane method, generalized inertia force can be 
expressed as 

 
Tˆ R V R                              (62) 

 
where 
 

   R Au Bu                           (63) 
 
where A and B are both matrixes, which can be 
expressed as 



J. Cent. South Univ. (2018) 25: 2641–2653 

 

2650

 

T
1 1 1 1 2 2 2 2 3 3 3 3

ˆ ˆ ˆˆ ˆ ˆ   A m V J ω m V J ω m V J ω  

1 1

1 1 1 1 1

2 2

2 2 2 2 2

3 3
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 
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 
 
 

  

m V

J ω ω J ω

m V
B

J ω ω J ω

m V

J ω ω J ω



 


 


 

 

 
where m is a mass matrix; J is the moment of 
inertia; and the meaning of subscript is the same as 
above. 

4) Dynamic model 
The Kane equation can be represented by  

  R R  0                              (64)  
Finally, substituting Eqs. (60)–(63) into Kane 

Eq. (64) and considering kinetic Eq. (56), the 
simplest kinetic equation for this rocket-line- 
parachute system can be formulated:  

   

1

1T Tˆ ˆ





 


 

q W u

u V A V R Bu




                 (65) 

 
4.3 Airdrop system dynamic model for entire 

operation process 
Considering the kinetic relations among the 

bodies in this system and the constraint form of 
cut-off joints, the constraint equations can be 
formulated:  
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(66) 
 
where 
 

 
   
   

0

T
1 0

T
1 0 1 0 10

T
1 0 1 0 10

0,   
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3,   1 0 0 cos
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l l
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  
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
   

M x
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 0 1 0 1 0 1x x y y z z    x                (67) 
 
where t0 is the setup time after air-launched stating; 
l0 is distance from rocket’s barycenter to tail part of 
cargo space; l10 is distance from top of rocket’s to 
tail of cargo space. 

Based on Eq. (43), the iterative relations of 
constraint forces and moments in this system can be 
expressed as 
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(i=0, 1, 2)                           (68) 
 

where i is the number of air-launched phase. 
Above all, Eqs. (47)–(49), Eqs. (65) and (68) 

compose the unified equations of motion for this 
system. And based on the equivalent rigidization 
model and the unified equations, we can get the 
kinetic characteristics of the system. 
 
5 Verification model based on ADAMS 
 

To verify the veracity of the theory and models 
in this paper, the corresponding verification model 
is built based on dynamic software ADAMS and 3D 
modeling software CATIA. Because it is not the 
focus of this paper, the modeling process is briefly 
described as follows and the details of how to 
model can be seen in Ref. [23]. 

A three-dimensional solid model is constructed, 
and then analyzed in CATIA in accordance with the 
design parameter for the carrier aircraft, the rocket, 
the suspension line and the parachute. The model is 
then imported into ADAMS to add quality attributes. 
Figure 7 shows three views of the air-launched 
system solid model. Physical modeling is done 
mainly in ADAMS, which allows for the expression 
of mechanical values. This is done through the 
addition of Kinematical constraints, driving 
constraints, forces, and moments to the solid model 
in ADAMS. As a result, relative motions and drives 
among the components are defined and given 
mechanical prosperities. 
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Figure 7 Three-dimensional solid model of air-launched 

system 

 
5.1 Veracity of equivalent rigidization model 

Simulation of opening parachute process is 
simulated first based on the equivalent rigidization 
model. We divide suspension line into sixty 
elements. The result is shown in Figure 8. We get 
the phenomenon of fishhook by numerical 
simulation, which is the same as the other 
researchers. So, the equivalent rigidization model in 
this paper is feasible and valid. 
 

 
Figure 8 Phenomenon of fishhook 

 
5.2 Veracity of dynamic modeling method of 

variable topology 
The mathematical models are simulated at the 

same conditions to verify the feasibility and validity 
of the theory and models in this paper. The initial 
conditions of simulation are as follows. Initial 
altitude of aircraft is 10 km. Initial velocity of 
aircraft is 0.65 Mach. The weight of clear aircraft is 
89000 kg. In the body frame, the moments of inertia 
of aircraft at axis x, y and z are respectively  
540740 kgꞏm2, 737480 kgꞏm2, 117030 kgꞏm2. The 
area of wing is 300 m2. The length of wing is 51 m, 
the average chord is 6 m, the mass of rocket is 

28000 kg. In the body frame, the moments of inertia 
of rocket at axis x, y and z are respectively    
7870 kgꞏm2, 545000 kgꞏm2, 545000 kgꞏm2. The 
length of rocket is 18.5 m. The friction coefficient is 
0.005. The characteristic drag of parachute is 10 m2. 
The length of flexible suspension line is 60 m. The 
mass of parachute is 1.798 kg. The trimming angle 
of attack is 1.2174°. The curves of the key 
parameters are shown in Figures 9–11. In these 
Figures, line without explanation refers to results 
obtained by method in this paper and dashed line 
with explanation of VP refers to the results obtained 
by method of ADAMS. 
 

 
Figure 9 Curves of pitch angle and pitch angular 

velocity 

 

 
Figure 10 Curves of three-dimension track 

 

Figure 9 shows pitch angle and pitch angular 
velocity in vertical plane. Figure 10 shows 
three-dimension track. Figure 11 shows two- 
dimension track. The simulation results show that 
pitch angle at about 3 s starts increasing, while air- 
launched process goes into the third step. At about  
4 s, rocket separates from aircraft, while air- 
launched process goes into last step. And at about 
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Figure 11 Curves of two-dimension track 

 
10.5 s, the pitch angle is close to 90°, which is the 
largest one and whose angular velocity is equal to 
zero, and the time is suitable for rocket’s firing up. 
The simulation closely resembles the real condition. 
According to the comparison of the results, the 
dynamic responses of the two models are basically 
the same and the error ranges are under allowing. In 
conclusion, the theory and models in this paper are 
feasible and valid. 
 
6 Conclusions 
 

The modeling method for rigid-flexible 
coupling multi-body system with variable topology 
based on the equivalent rigidization model, CFA 
and so on, has been presented. Considering the 
modeling process, solution algorithm and the 
air-launched examples, it can be seen that the 
modeling method has more advantages. 

1) There is not any second derivative of 
generalized coordinates with respect to time in  
Eqs. (44)–(46), which indicates that the equations 
of constraint forces and moments can be solved 
independently from equations of state variable. In 
addition, Eqs. (44)–(46) are algebra equations. So, 
the method simplifies calculations, reduces the 
number of differential-algebraic equations, and 
increases the solving speed. 

2) Dynamic models of different subsystems 
can be independently constructed from each other. 

3) Considering that any constraints can be 
replaced by corresponding constraint forces and 
moments, the method is suitable for multi-body 
dynamic system with variable topology to construct 
the unified models. 

4) Based on the method, design of control law 

can be easier. 
5) Because the whole system is divided into 

some independent subsystems, performance of 
appointed bodies can be obtained more easily, and 
the analytical efficiency is increased. 
 

References 
 
[1] KE Peng, YAN Chun-xin, YANG Xue-song. Extraction 

phase simulation of cargo airdrop system [J]. Chinese 

Journal of Aeronautics, 2006, 19(4): 315–321. DOI: 

10.1016/S1000-9361(11)60334-8. 

[2] CHEN Jie, SHI Zhong-ke. Aircraft modeling and simulation 

with cargo moving inside [J]. Chinese Journal of Aeronautics, 

2009, 22(2): 191–197. DOI: 10.1016/S1000-9361(08)60086- 

2. 

[3] YAN Chun-xin, KE Peng. Development and validation of the 

multi-body simulation software for the heavy cargo airdrop 

system [C]// 19th AIAA Aerodynamic Decelerator Systems 

Technology Conference and Seminar. Williamsburg, VA, 

AIAA 2007-2572. DOI: 10.2514/6.2007-2572. 

[4] DESABRAIS K J, RILEY J, SADECK J, LEE C. Low-cost 

high-altitude low-opening cargo airdrop systems [J]. Journal 

of Aircraft, 2012, 49(1): 349–354. DOI: 10.2514/1.C031527. 

[5] CHEN Jie, MA Cun-bao, DONG Song. Kinetic 

characteristics analysis of aircraft during heavy cargo airdrop 

[J]. International Journal of Automation and Computing, 

2014, 11(3): 313–319. DOI: 10.1007/s11633-014-0794-5. 

[6] LI Chun, TENG Hai-shan, ZHU Yan-hua, JIANG Wan-song, 

ZHOU Peng, HUANG Wei, CHEN Xu, LIU Jing-lei. Design 

and simulation for large parafoil fix line object homing 

algorithm [J]. Journal of Central South University, 2016, 

23(9): 2276−2283. DOI: 10.1007/s11771-016-3285-8. 

[7] SARIGUL-KLIJN M, SARIGUL-KLIJN N, HUDSON G C, 

HOLDER L, FRITZ D, COLONEL L. Flight testing of a 

gravity air launch method to enable responsive space access 

[C]// AIAA Space 2007 Conference & Exposition. Long 

Beach, California, 2007, AIAA 2007-6146. DOI: 10.2514/ 

6.2007-6146. 

[8] SARIGUL-KLIJN M, SARIGUL-KLIJN N, HUDSON G C, 

HOLDER L, LIESMAN G, SHELL D. Gravity air launching 

of earth-to-orbit space vehicles [C]// Space 2006. San Jose, 

California, AIAA 2006-7256. DOI: 10.2514/6.2006-7256. 

[9] BONACETO B, STALKER P. Design and development of a 

new cargo parachute and container delivery system [C]// 

18th AIAA Aerodynamic Decelerator Systems Technology 

Conference and Seminar. AIAA 2005-1647. DOI: 10.2514/ 

6.2005-1647. 

[10] WOLF D. Dynamic stability of a non-rigid parachute and 

payload system [J]. Journal of Aircraft, 1971, 8(8): 607–609. 

DOI: 10.2514/3.59145. 

[11] SARIGUL-KLIJN M, SARIGUL-KLIJN N, HUDSON G C, 

MCKINNRY B, MENZEL L, GRABOW E. Trade studies 

for air launching a small launch vehicle from a cargo aircraft 

[C]// 43rd AIAA Aerospace Sciences Meeting and Exhibit. 

Reno, Nevada, 2005, AIAA 2005-621. DOI: 10.2514/6.2005- 

621 



J. Cent. South Univ. (2018) 25: 2641–2653 

 

2653

 

[12] HUDSON G C. Quick-reach responsive launch system [C]// 

4th Responsive Space Conference. AIAA-RS4 2006-2003. 

DOI: 10.2514/6.2006-2003. 

[13] SARIGULKLIGN N, SATIGULKLIGN M, NOEL C. 

Air-Launching earth to orbit: Effects of launch conditions 

and vehicle aerodynamics [J]. Journal of Spacecraft and 

Rockets, 2005, 42(3): 569–572. DOI: 10.2514/1.8634. 

[14] NOGUCHI Y, ARIME T, MATSUDA S, FUJI T, 

KANAYAMA H, DEPASQUALE D. Japanese air launch 

system concept and test plan [C]// Aerodynamic Decelerator 

Systems Technology Conferences. Daytona Beach, Florida, 

2013, AIAA 2013-1331. DOI: 10.2514/6.2013-1331. 

[15] ZHANG Qing-bin, QIAN Tang-gang, PENG Yong, WANG 

Hai-tao. Dynamics of parachute-capsule recovery system: 

Chaps. 3 [M]. Beijing: National Defense Industry Press, 

2013: 30. (in Chinese) 

[16] FULLER J D, TOLSON R H, RAISZADEH B. Multibody 

parachute flight simulations using singular perturbation 

theory [C]// 20th AIAA Aerodynamic Decelerator Systems 

Technology Conference and Seminar. Seattle, Washington, 

2009, AIAA 2009-2920. DOI: 10.2514/6.2009-2920. 

[17] ROMERO L M, RAY E S. Application of statistically 

derived CPAS parachute parameters [C]// Aerodynamic 

Decelerator Systems Technology Conferences & AIAA 

Aerodynamic Decelerator Systems (ADS) Conference. 

Daytona Beach, Florida, 2013, AIAA 2013-1266. DOI: 10. 

2514/6.2013-1266. 

[18] WU Gen-yong, HE Xing-suo, FRANK PAI P. Numerical and 

experimental investigation of nonlinear dynamics of highly 

flexible multibody systems [C]// 52nd 

AIAA/ASME/ASCE/AHS/ASC Structures, Structural 

Dynamics and Materials Conference. Denver, Colorado, 

2011, AIAA 2011-1870. DOI: 10.2514/6.2011-1870. 

[19] DESABRAIS K J. Aerodynamic forces on an airdrop 

platform [C]// 18th AIAA Aerodynamic Decelerator Systems 

Technology Conference and Seminar. AIAA 2005-1634. DOI: 

10.2514/6.2005-1634. 

[20] ZHANG Qing-bin. A new parachute deployment model by 

multibody dynamics [C]// 17th AIAA Aerodynamic 

Decelerator Systems Technology Conference and Seminar. 

Monterey, California, AIAA 2003-2134. DOI: 10.2514/ 

6.2003-2134. 

[21] ZHANG Xiang, HUANG Yi-yong, CHEN Xiao-qian, HAN 

Wei. Modeling of a space flexible probe-cone docking 

system based on the Kane method [J]. Chinese Journal of 

Aeronautics, 2014, 27(2): 248–258. DOI: 10.1016/j.cja.2014. 

02.020. 

[22] ZHOU Chun-lin, WANG Bo-xing, LI Jing-lan, XIONG 

Rong. Dynamic modeling of a wave glider [J]. Frontiers of 

Information Technology & Electronic Engineering, 2017, 

18(9): 1295–1304. DOI: 10.1631/FITEE.1700294. 

[23] ZHANG Jiu-xing, XU Hao-jun, ZHANG Deng-cheng, LIU 

Dong-liang. Safety modeling and simulation of multi-factor 

coupling heavy-equipment airdrop [J]. Chinese Journal of 

Aeronautics, 2014, 27(7): 1062–1069. DOI: 10.1016/j.cja. 

2014.08.014. 

[24] DRAGOLJUB V, OLGICA L, VOJISLAV B. Development 

of dynamic-mathematical model of hydraulic excavator [J]. 

Journal of Central South University, 2017, 24(9): 2010–2018. 

DOI: https://doi.org/10.1007/s11771-017-3610-x. 

[25] DOHERR K F, SCHILLING H. Nine-degree-of-freedom 

simulation of rotating parachute systems [J]. Journal of 

Aircraft, 1992, 29(5): 774–781. DOI: 10.2514/3.46245. 

[26] KANG B S, SHYY Y K. Design of flexible bodies in 

multibody dynamic systems using equivalent static load 

method [C]// 49th AIAA/ASME/ASCE/AHS/ASC Structures, 

Structural Dynamics, and Materials Conference. Schaumburg, 

IL, 2008, AIAA2008-1708. DOI: 10.2514/6. 2008-1708. 

[27] RUI Xiao-ting, YUN Lai-feng, LU Yu-qi, WANG Guo-ping. 

Transfer matrix method of multibody system and its 

applications Chaps. 1, 7 [M]. Beijing: Science Press, 2008. 

(in Chinese) 

[28] ZHENG Wu-ji, LI Ying-hui, QU Liang, YUAN Guo-qiang. 

Dynamic envelope determination based on differential 

manifold theory [J]. Journal of Aircraft, 2017, 54(5): 

2005–2009. DOI: 10.2514/1.C034258. 

(Edited by YANG Hua) 

 
 
中文导读 
 

内装式空中发射运载火箭的动力学模型 
 
摘要：针对类似于内装式空中发射多体系统及重装空投系统的变拓扑结构刚-柔耦合多体系统，为建

立形式统一的动力学模型，并避免单一建模方法的冗余建模过程，提出基于等效刚化的建模方法。在

建模过程中，截断在系统工作过程中拓扑结构发生变化的铰。包含柔性体的子系统采用等效刚化的建

模方法，其他子系统可根据需要选择合适的建模方法。在计算过程中，根据约束力计算算法及矢量力

学理论可将约束力与状态方程独立求解。以内装式空中发射系统的动力学模型建立为例子，验证了基

于等效刚化的建模方法的有效性和正确性，并分阶段建立了空中发射系统的动力学模型。与其他建模

方法相比，上述理论得到的动力学模型在不同阶段具有统一的形式，建模过程简单且程序化。等效刚

化的建模方法及其相关理论可应用于类似的刚-柔耦合多体系统。 
 
关键词：刚柔耦合；变拓扑结构；内装式空中发射运载火箭；多体系统；柔性绳索 


