自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
英文版编委
自然科学版 英文版
英文版首届青年编委

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(英文版)

Journal of Central South University

Vol. 23    No. 4    April 2016

[PDF Download]    [Flash Online]

    

Optimal multilevel thresholding based on molecular kinetic theory optimization algorithm and line intercept histogram
FAN Chao-dong(范朝冬)1,2, REN Ke(任柯)1,2, ZHANG Ying-jie(张英杰)3, YI Ling-zhi(易灵芝)1,2

1. Key Laboratory of Intelligent Computing and Information Processing (Xiangtan University), Xiangtan 411105, China;
2. HunanProvinceCooperativeInnovationCenter for Wind Power Equipment and Energy Conversion,
Xiangtan 411101, China;
3. College of Information Science and Engineering, Hunan University, Changsha 410082, China

Abstract:Among all segmentation techniques, Otsuthresholding method is widely used. Line intercept histogram based Otsuthresholding method (LIH Otsu method) can be more resistant to Gaussian noise, highly efficient in computing time, and can be easily extended to multilevel thresholding. But when images contain salt-and-pepper noise, LIH Otsu method performs poorly. An improved LIH Otsu method (ILIH Otsu method) is presented, which can be more resistant to Gaussian noise and salt-and-pepper noise. Moreover, it can be easily extended to multilevel thresholding. In order to improve the efficiency, the optimization algorithm based on the kinetic-molecular theory (KMTOA) is used to determine the optimal thresholds. The experimental results show that ILIH Otsu method has stronger anti-noise ability than two-dimensional Otsuthresholding method (2-D Otsu method), LIH Otsu method, K-means clustering algorithm and fuzzy clustering algorithm.

 

Key words: image segmentation; multilevel thresholding; otsuthresholding method; kinetic-molecular theory(KMTOA); line intercept histogram

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765(中) 88836963(英) 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号