自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
英文版编委
自然科学版 英文版
英文版首届青年编委

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(自然科学版)

Journal of Central South University

第47卷    第8期    总第264期    2016年8月

[PDF全文下载]    [Flash在线阅读]

    

文章编号:1672-7207(2016)08-2730-08
基于改进遗传交叉算子的高心墙堆石坝参数反演
李少林1, 2,周伟1,马刚1,常晓林1,胡超1

(1. 武汉大学 水资源与水电工程科学国家重点实验室,湖北 武汉,430072;
2. 长江勘测规划设计研究院,湖北 武汉,430010
)

摘 要: 受基因工程选择性克隆优秀基因片段的启发,提出一种基于基因片段差异度的自适应交叉算子(genetic crossover based on the difference of gene fragment,DGFX)。在改进的交叉算子中,随机确定基因片段长度,计算父代个体对应基因片段的差异度,根据差异度选择基因片段进行交叉操作,能有效避免近亲繁殖,减少无效交叉操作,加快收敛速度。此外,根据演化代数自适应调整基因片段长度系数,增强算法全局收敛能力。将该交叉算子与帕累托交叉算子、启发式交叉算子运用标准测试函数进行对比分析。研究结果表明:利用DGFX交叉算子时能快速收敛到全局最优解,且算法鲁棒性强、精度高。将DGFX交叉算子运用于瀑布沟心墙堆石坝堆石体力学参数反演,利用反演的力学参数进行计算,各测点计算值和实测值在发展趋势和数值上均吻合较好,说明DGFX交叉算子运用于多变量、强非线性复杂岩土工程位移反演中的优越性,具有良好的实际应用价值。

 

关键词: 心墙堆石坝;参数反演;遗传算法;交叉算子;RBF神经网络

Inversion of mechanical parameters of high central core rock-fill dam based on modified genetic crossover operator
LI Shaolin1, 2, ZHOU Wei1, MA Gang1, CHANG Xiaolin1, HU Chao1

1. State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University, Wuhan 430072, China;
2. Changjiang Institute of Survey, Planning Design and Research, Wuhan 430010, China

Abstract:A modified adaptive genetic crossover was provided to solve the multi-variable complex problem based on the difference of gene fragment (DGFX). In the modified crossover, the length of gene fragment was randomly determined and the difference of each gene fragment was calculated firstly. Then, the crossover point was selected according to the differences of gene fragments, which reduced the inbreeding and invalid crossover operator, and the global search capability of the algorithm was increased by the tragedy of adaptive length index. The proposed crossover was compared with two existing crossover operators (DPX and HX). A set of nonlinear test problems were used to verify the performance of the novel crossover operator. The results show that the performance of proposed crossover operator is better than or similar to those of other crossover operators and is especially effective in solving high-dimensional nonlinear problems. Then the new crossover is applied to parameters inversion of mechanical parameters of rockfill. At last, the calculated parameters are used to forecast the settlement of the monitoring points of Pubugou central core rock-fill dam. The forecasted values agree well with the measured data, which indicates that the DGFX crossover operator can be well applied to parameter inversion of complex model.

 

Key words: high central core rock-fill dam; parameter inversion; genetic algorithm; crossover operation; RBF-ANN

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765(中) 88836963(英) 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号