自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
英文版编委
自然科学版 英文版
英文版首届青年编委

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(英文版)

Journal of Central South University

Vol. 25    No. 3    March 2018

[PDF Download]    [Flash Online]

    

Simulation and analysis of humid air turbine cycle based on aeroderivative three-shaft gas turbine
HUANG Di(黄地)1, 2, CHEN Jin-wei(陈金伟)1, ZHOU Deng-ji(周登极)1, ZHANG Hui-sheng(张会生)1, SU Ming(苏明)1

1. The Key Laboratory of Power Machinery and Engineering (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; 2. State Grid Jiangsu Electric Power Research Institute, Nanjing 211103, China

Abstract:Due to the fact that the turbine outlet temperature of aeroderivative three-shaft gas turbine is low, the conventional combined cycle is not suitable for three-shaft gas turbines. However, the humid air turbine (HAT) cycle provides a new choice for aeroderivative gas turbine because the humidification process does not require high temperature. Existing HAT cycle plants are all based on single-shaft gas turbines due to their simple structures, therefore converting aeroderivative three-shaft gas turbine into HAT cycle still lacks sufficient research. This paper proposes a HAT cycle model on a basis of an aeroderivative three-shaft gas turbine. Detailed HAT cycle modelling of saturator, gas turbine and heat exchanger are carried out based on the modular modeling method. The models are verified by simulations on the aeroderivative three-shaft gas turbine. Simulation results show that the studied gas turbine with original size and characteristics could not reach the original turbine inlet temperature because of the introduction of water. However, the efficiency still increases by 0.16% when the HAT cycle runs at the designed power of the simple cycle. Furthermore, simulations considering turbine modifications show that the efficiency could be significantly improved. The results obtained in the paper can provide reference for design and analysis of HAT cycle based on multi-shaft gas turbine especially the aeroderivative gas turbine.

 

Key words: humid air turbine; aeroderivative gas turbine; saturator; simulation

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765(中) 88836963(英) 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号