自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
英文版编委
自然科学版 英文版
英文版首届青年编委

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(自然科学版)

Journal of Central South University

第49卷    第4期    总第284期    2018年4月

[PDF全文下载]    [Flash在线阅读]

    

文章编号:1672-7207(2018)04-0857-08
用对数函数描述收敛因子的改进灰狼优化算法及其应用
伍铁斌1, 2,桂卫华1,阳春华1,龙文3,李勇刚1,朱红求1

(1. 中南大学 信息科学与工程学院,湖南 长沙,410083; 2. 湖南人文科技学院 能源与机电工程学院,湖南 娄底,417000; 3. 贵州财经大学 贵州省经济系统仿真重点实验室,贵州 贵阳,550025)

摘 要: 针对灰狼优化(grey wolf optimization, GWO)算法在求解复杂高维优化问题时存在解精度低、易陷入局部最优等缺点,提出一种基于对数函数描述收敛因子的改进GWO算法。采用佳点集方法初始化种群以保证个体尽可能均匀地分布在搜索空间中;提出一种基于对数函数描述的非线性收敛因子替代线性递减收敛因子,以协调算法的勘探和开采能力;对当前最优的3个个体执行改进的精英反向学习策略产生精英反向个体,以避免算法出现早熟收敛。研究结果表明改进算法具有较好的寻优性能。

 

关键词: 灰狼优化算法;对数函数;收敛因子

Improved grey wolf optimization algorithm with logarithm function describing convergence factor and its application
WU Tiebin1, 2, GUI Weihua1, YANG Chunhua1, LONG Wen3, LI Yonggang1, ZHU Hongqiu1

1. School of Information Science and Engineering, Central South University, Changsha 410083, China; 2. College of Energy and Electrical Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, China; 3. Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics, Guiyang 550025, China

Abstract:The grey wolf optimization (GWO) algorithm has a few disadvantages such as low precision and high possibility of being trapped in local optimum, an improved GWO algorithm was proposed for solving high-dimensional optimization problem based on the convergence factor about logarithmic function. An initial population was generated based on good point set method to assure that the individuals were distributed in the search space as uniformly as possible. A nonlinear convergence factor was proposed based on logarithm function to balance the exploration ability and exploitation ability. Improved elite opposition-based learning strategy was used to avoid premature convergence of GWO algorithm. Benchmark functions and parameters optimization of real application were employed to verify the performance of the improved GWO algorithm. The results show that the proposed algorithm has better performance.

 

Key words: grey wolf optimization algorithm; logarithm function; convergence factor

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765(中) 88836963(英) 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号