自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
英文版编委
自然科学版 英文版
英文版首届青年编委

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(英文版)

Journal of Central South University

Vol. 25    No. 9    September 2018

[PDF Download]    [Flash Online]

    

Upper bound analysis of ultimate pullout capacity of shallow 3-D circular plate anchors based on nonlinear Mohr-Coulomb failure criterion
ZHAO Lian-heng(赵炼恒)1, 2, TAN Yi-gao(谭亦高)1, HU Shi-hong(胡世红)1, DENG Dong-ping(邓东平)1, YANG Xin-ping(杨新平)1

1. School of Civil Engineering, Central South University, Changsha 410075, China;
2. Key Laboratory of Heavy-haul Railway Engineering Structure of Ministry of Education,
Central South University, Changsha 410075, China

Abstract:Based on the nonlinear Mohr-Coulomb failure criterion and the associated flow rules, the three-dimensional (3-D) axisymmetric failure mechanism of shallow horizontal circular plate anchors that are subjected to the ultimate pullout capacity (UPC) is determined. A derivative function of the projection function for projecting the 3-D axisymmetric failure surface on plane is deduced using the variation theory. By using difference principle, the primitive function of failure surface satisfying boundary condition and numerical solution to its corresponding ultimate pullout capacity function are obtained. The influences of nonlinear Mohr-Coulomb parameters on UPC and failure mechanism are studied. The result shows that UPC decreases with dimensionless parameter m and uniaxial tensile strength increases but increases when depth and radius of plate anchor, surface overload, initial cohesion, geomaterial density and friction angle increase. The failure surface is similar to a symmetrical spatial funnel, and its shape is mainly determined by dimensionless parameter m; the surface damage range expands with the increase of radius and depth of the plate anchor as well as initial cohesion but decreases with the increase of dimensionless parameter m and uniaxial tensile strength as well as geomaterial density. As the dimensionless parameter m=2.0, the numerical solution of UPC based on the difference principle is proved to be feasible and effective through the comparison with the exact solution. In addition, the comparison between solutions of UPC computed by variation method and those computed by upper bound method indicate that variation method outperforms upper bound method.

 

Key words: shallow circular plate anchors; ultimate pullout capacity; variation analysis; nonlinear Mohr-Coulomb failure criterion; upper bound limit analysis

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765(中) 88836963(英) 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号