自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
英文版编委
自然科学版 英文版
英文版首届青年编委

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(英文版)

Journal of Central South University

Vol. 26    No. 12    December 2019

[PDF Download]    [Flash Online]

    

RVFLN-based online adaptive semi-supervised learning algorithm with application to product quality estimation of industrial processes
DAI Wei(代伟)1, 2, HU Jin-cheng(胡金成)1, CHENG Yu-hu(程玉虎)1, WANG Xue-song(王雪松)1, CHAI Tian-you(柴天佑)2

1. School of Information and Control Engineering, China University of Mining and Technology,Xuzhou 221116, China;
2. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University,Shenyang 110819, China

Abstract:Direct online measurement on product quality of industrial processes is difficult to be realized, which leads to a large number of unlabeled samples in modeling data. Therefore, it needs to employ semi-supervised learning (SSL) method to establish the soft sensor model of product quality. Considering the slow time-varying characteristic of industrial processes, the model parameters should be updated smoothly. According to this characteristic, this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network (RVFLN), denoted as OAS-RVFLN. By introducing a L2-fusion term that can be seen a weight deviation constraint, the proposed algorithm unifies the offline and online learning, and achieves smoothness of model parameter update. Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy. Finally, the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product, which further verifies its effectiveness and potential of industrial application.

 

Key words: semi-supervised learning (SSL); L2-fusion term; online adaptation; random vector functional link network (RVFLN)

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765(中) 88836963(英) 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号