自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
英文版编委
自然科学版 英文版
英文版首届青年编委

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(英文版)

Journal of Central South University

Vol. 26    No. 12    December 2019

[PDF Download]    [Flash Online]

    

Mechanical properties of bimrocks with high rock block proportion
LIN Yue-xiang(林越翔)1, PENG Li-min(彭立敏)1, LEI Ming-feng(雷明锋)1, 2, YANG Wei-chao(杨伟超)1, LIU Jian-wen(刘建文)1

1. School of Civil Engineering, Central South University, Changsha 410075, China;
2. Key Laboratory of Engineering Structure of Heavy Haul Railway (Central South University),Changsha 410075, China

Abstract:For the investigation of mechanical properties of the bimrocks with high rock block proportion, a series of laboratory experiments, including resonance frequency and uniaxial compressive tests, are conducted on the 64 fabricated bimrocks specimens. The results demonstrate that dynamic elastic modulus is strongly correlated with the uniaxial compressive strength, elastic modulus and block proportions of the bimrocks. In addition, the density of the bimrocks has a good correlation with the mechanical properties of cases with varying block proportions. Thus, three crucial indices (including matrix strength) are used as basic input parameters for the prediction of the mechanical properties of the bimrocks. Other than adopting the traditional simple regression and multi-regression analyses, a new prediction model based on the optimized general regression neural network (GRNN) algorithm is proposed. Note that, the performance of the multi-regression prediction model is better than that of the simple regression model, owing to the consideration of various influencing factors. However, the comparison between model predictions indicates that the optimized GRNN model performs better than the multi-regression model does. Model validation and verification based on fabricated data and experimental data from the literature are performed to verify the predictability and applicability of the proposed optimized GRNN model.

 

Key words: block-in-matrix-rock; high rock block proportion; resonance frequency test; general regression neural network

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765(中) 88836963(英) 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号