自然科学版 英文版
自然科学版 英文版
自然科学版 英文版

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(自然科学版)

Journal of Central South University

第24卷    第3期    总第91期    1993年6月

[PDF全文下载]    [Flash在线阅读]

    

文章编号:(1993)03-289-6
异常识别与分离的自适应曲率结构分选滤波器
文百红

(中南矿冶学院地质系;长沙;410083)

摘 要: 在考察划分位场结构线性和非线性滤波器的基础上,设计出一种自适应曲率结构分选滤波器.提出和应用自适应曲率结构特征分析方法,借用图象结构识别技术进行异常识别和特征分析,而后对识别的异常应用三次样条函数进行分离.理论模型和野外实例表明,该滤波器具有异常划分精度高、适用性强、可分层次提取异常结构的特点.特别是通过自适应曲率结构分选,减少了滤波参数选择的主观性,便于实现计算机自动综合处理.

 

关键字: 位场结构; 识别; 分离; 样条函数/曲率结构; 分选滤波器

ADAPTIVE CURVATURE SORTING FILTER IN ANOMALY RECOGNITION AND SEPARATION
Wen Baihong

Department of Geology

Abstract:On the basis of studying the current linear and nonlinear filters for identifying potential field structure,an adaptive curvature sorting filter is designed.A method of analyzing the characteristics of the field curvature is proposed and utilized in the paper.By means of techniques in image pattern recognition,anomalies are recognized and their features are delineated.By using cubic spline function to fit non-anomalous data,the background field is determined,and consequently the recognized anomalies are separated by substracting from the original field.Theoretical models and field examples show that the proposed filter has high accuracy and good applicability in anomaly identification and can be used to strip multi-scale field structure.With adaptive curvature sorting,the subjectiveness in specification of filter's parameters is reduced and is incorporated efficiently in automatic computer processing.

 

Key words: potential field structure; recognition; separation; spline function/curvature structure; sorting filter

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号